

ONFI 4.0: Faster I/O speeds at lower power consumption

Terry Grunzke
Micron Technology

emory ONFI 4.0: Adopted April 2014

- Reduces I/O power consumption
 - Lower I/O voltage
 - Reduced termination requirements
- Increases I/O performance
 - Scale I/O speeds faster as NAND page sizes grow
 - Soft data requirements
 - Latency reduction
- Continues interoperability between vendors
 - Collaboration in JC42.4 ONFI/JEDEC Joint Task Group

ONFI Workgroup Continues To Produce Results!

ONFI has and continues to deliver innovation & interoperability enabling faster NAND adoption

Memory ONFI 4.0 Features

- NV-DDR3:
 - VccQ = 1.2V (1.14V 1.26V)
 - Evolutionary interface from NV-DDR2
 - Same packaging, Opcodes, timing diagrams/parameters, etc
 - All of the ONFI 3.x features will continue to be supported
 - Matrix Termination, CE reduction, Volume addressing,
 Differential signaling, VPP, External VrefQ, Warm Up cycles,
 etc...
 - Same output drive strength and RTT settings
- Maximum I/O speeds increased
 - 667 MT/s and 800 MT/s timing modes added
- ZQ calibration supported
 - RZQ = 300 ohms +/- 1%
 - Long (F9h) and Short (D9h) Calibration commands

nory ONFI 4.0 Differences

- Devices that support NV-DDR3 may not support VccQ = 3.3V
- NV-DDR3 Interface will not power up in SDR (i.e. Async)
 - SDR, NV-DDR, NV-DDR2 not supported at VccQ=1.2V
 - Agnostic READ ID will provide information on power on interface
- tADL and tCCS will push out due to larger page sizes and data path design requirements to achieve faster I/O speeds
- Electrical Package Specifications for Zpk and Tpd
 - Same methodology as DRAM DDR4
- Possible reduced Driver strength settings supported

Memory ONFI 4.0 Performance

- Numbers are highly dependent on NAND/system architecture
 - Page size / number of LUNs
 - Number of planes
 - tPROG/tR
 - Programming Algo
 - Available System buffering
- SI highly dependent on a number of factors
 - Topology
 - Channel length
 - Package Zpk/Tpd
 - PCB Design

Santa Clara, CA

- Impedance
- Trace matching
- Available drive strengths/RTT
- RON/RTT variance
- Controller overshoot restrictions
- Controller/NAND capacitance

6

Flash Memory Read Latency

4KB read latency has diminishing returns

Memory ONFI 4.0 Bus Power Reduction

- Switching power reduction
 - P = FV²C V: 1.8V -> 1.2V C: Significantly Reduced
- Termination power reduction
 - Rtt requirements reduced
- NAND data path power reduction
 - Can provide improved NAND data path power biasing

Memory Power comparisons

- Reduced Die Capacitance and smaller signaling also enables new topologies and increased fan-out:
 - 8 Die per channel at 400 MT/s with no termination
 - 16 Die per channel at 533 MT/s
 - 12 Die per channel at 667 MT/s
 - 8 Die per channel at 800 MT/s

Estimates are based on Signal Integrity analysis, actual performance may vary based on a number of system variables

Memory More LUNs per channel

- ONFI 4.0 provides:
 - I/O Performance improvements
 - I/O and NAND Power consumption improvements
 - Straightforward evolutionary enablement
 - Industry interoperability
- ONFI 4.0 specification available for download
 - www.onfi.org/specifications