Asicron

TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash

Technical Note
Patching the Linux Kernel and U-Boot for Micron® M29 Flash Memory

Introduction

Introduction

Comparison of Spansion GL and Micron M29

This application note provides a guide for modifying the memory technology device
(MTD) layer software for the purpose of correctly using Micron® M29 family Flash
memory devices in a Linux environment.

This document is also useful for all Linux operating system users who are migrating from
Spansion® GL™ parts to Micron M29 family Flash memory devices (M29W and
M29EW). The document briefly outlines the primary specification differences between
both families of devices. For a deeper analysis of hardware differences, please refer to the
specific migration guide available on the Micron website at www.Micron.com. The
section “Reference Documentation” on page 25 provides a URL for locating related

migration guides.

This document also describes the modifications that are required to make a Linux envi-
ronment work with M29 Flash memory devices.

The Micron M29 Flash memory devices are pin-compatible devices for the S29GL Flash
memory device on leading 65nm lithography. Table 1 provides a comparison of the
primary features of each device. For more detailed information on the compatibility of
Micron and Spansion memory devices, please refer to the specific migration guide avail-
able the Micron website (for a list of URLs, see the section “Reference Documentation”

on page 25).
Table 1: Spansion GL and M29 Feature Comparison
Features M29EW M29W S29GL-P™ S29GL-N™
Process technology 65nm FG 65nm FG 90nm MirrorBit™ 110nm MirrorBit™
Package 56-TSOP 56-TSOP 56-TSOP 56-TSOP

64-Fortified BGA

64-Fortified BGA

64-Fortified BGA

64-Fortified BGA

Block architecture

Uniformed 128KB

Uniformed 128KB

Uniformed 128KB

Uniformed 128KB

Page read size

16 words (x16)
32 bytes (x8)

8 words (x16)
16 bytes (x8)

8 words (x16)
16 bytes (x8)

8 words (x16)
16 bytes (x8)

Program buffer size

512 words (x16)
256 bytes (x8)

32 words (x16)
64 bytes (x8)
256 word (enhanced

32 words (x16)
64 bytes (x8)

16 words (x16)
32 bytes (x8)

interface

program)
Typical average program 1.46 MB/s 0.7 MB/s 0.148 MB/s 0.148 MB/s
speed with full buffer
Support for common Flash Yes Yes Yes Yes

PDF: 09005aef846285ae/Source: 09005aef846285c8

tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN

Products and specifications discussed herein are for evaluation and reference purposes only and are subject to change by
Micron without notice. Products are only warranted by Micron to meet Micron’s production data sheet specifications. All
information discussed herein is provided on an “as is” basis, without warranties of any kind.

Micron Technology, Inc., reserves the right to change products or specifications without notice.
1 ©2012 Micron Technology, Inc. All rights reserved.

. TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
(pjlcron Comparison of Spansion GL and Micron M29
]

Table 1: Spansion GL and M29 Feature Comparison

Features M29EW M29W S29GL-P™ S29GL-N™
Hardware protection of top | Yes Yes Yes Yes
and bottom sectors
Software protect and Yes Yes Yes Yes
password protect
Password access Yes No No No
PDF: 09005aef846285ae/Source: 09005aef846285¢8 Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 2 ©2012 Micron Technology, Inc. All rights reserved.

Mcro n TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash

Enabling Buffered Programing Functionality in 2.4.x Kernels

Enabling Buffered Programing Functionality in 2.4.x Kernels

Buffered programming features are not included in the MTD for 2.4.x Linux kernels. To
take advantage of performance resulting from using the buffered programming feature,
a new function must be implemented and included in the Linux Flash driver. The
following code provides a possible implementation of buffered programing (validated
for the 2.4.21 kernel version) to be inserted in the cfi_cmdset_0002.c, which is the low-
level driver for Flash memory compliant with the 002 command set.

static inline int do_write_buffer(struct map_info *map, struct
flchip *chip,unsigned long adr, const u_char *buf, int len)

{
unsigned long timeo = jiffies + HZ;
unsigned int status;
unsigned int dqgq7, dq5, dql;
struct cfi_private *cfi = map->fldrv_priv;
DECLARE_WAITQUEUE (wait, current);
int ret = 0;
int z;
__u32 datum = 0;
#ifdef CONFIG_TANGO2
unsigned int newv, oldv;
unsigned int mask = ((cfi_buswidth_is 2()) ? Oxffff : Oxff);
#endif

if(('cfi_buswidth_is 2() && 'cfi buswidth_is 4()) ||
'len || (len % CFIDEV_BUSWIDTH))
return -EINVAL;

retry:

cfi spin lock (chip->mutex) ;

if (chip->state != FL_READY) {
set_current_state(TASK_UNINTERRUPTIBLE);

add wait_queue (&chip->wq, &wait);
cfi spin _unlock (chip->mutex) ;
schedule() ;

remove wait queue (&chip->wq, &wait);

timeo = jiffies + HZ;

PDF: 09005aef846285ae/Source: 09005aef846285¢8 Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 3 ©2012 Micron Technology, Inc. All rights reserved.

Mcro n TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash

Enabling Buffered Programing Functionality in 2.4.x Kernels
]

goto retry;

chip->state = FL_WRITING TO_BUFFER;
#ifdef CONFIG_TANGO2
if (adr == 0)
oldv = get_unaligned((__u32*)buf);
else
oldv
#endif

* (volatile unsigned int *)map->map priv_1;

adr += chip->start;
ENABLE_VPP (map) ;

/* write buffers algorithm taken from Am29LV641MH/L manual */

cfi_send gen_cmd (0xAA, cfi->addr_unlockl, chip->start, map,
cfi, cfi->device_type, NULL);

cfi send gen_cmd(0x55, cfi->addr unlock2, chip->start, map,
cfi, cfi->device_type, NULL);

cfi write(map, CMD(0x25), adr);

cfi write(map, CMD(len/CFIDEV_BUSWIDTH-1), adr); /* word count
*/

/* Write data */
for (z = 0; z < len; z += CFIDEV_BUSWIDTH) {
if (cfi_buswidth_is 2()) {
datum = *((__ulé*)buf);
buf += sizeof(__ uls6);
cfi_write(map, datum, adr + z);
//map->writel6é (map, datum, adr+z);
} else if (cfi_buswidth_is 4()) {
datum = *((___u32*)buf);
buf += sizeof(__ u32);
cfi_write(map, datum, adr + z);

//map->write32 (map, datum, adr+z);

PDF: 09005aef846285ae/Source: 09005aef846285¢8 Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 4 ©2012 Micron Technology, Inc. All rights reserved.

Aicron

TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
Enabling Buffered Programing Functionality in 2.4.x Kernels

/* start program */

cfi write(map, CMD(0x29), adr);

cfi_spin_unlock (chip->mutex) ;

cfi_udelay(chip->buffer write time);

cfi spin lock (chip->mutex) ;

/* use data polling algorithm */

dgl = CMD(1<<1);

dg5 = CMD (1<<5);

dg7 = CMD (1<<7);

timeo = jiffies + ((((chip->buffer write time << cfi->cfiqg-
>BufWriteTimeoutMax) * HZ) / 1000000) == 0 ?

(HZ/10) /* setting timeout to 100ms */

(((chip->buffer write_time << cfi->cfiq->BufWriteTime-
outMax) * HZ) / 1000000) + 1);

z -= CFIDEV_BUSWIDTH;/* go to last written address */

do

status = cfi_read(map, adr+z);

#ifdef CONFIG_TANGO2

newv = *(volatile unsigned int *)map->map priv_1;

if ((oldv & mask) == (newv & mask)) {

#endif

if((dg7 & status)
break;

if(((dg5 & status)
((dgl & status)

== (dgq7 & datum))

== dq5) ||
== dql)) {

status = cfi_read(map, adr+z);

if((dg7 & status) !'= (dg7 & datum))
{

ret = -EIO;

break;

} else break;

PDF: 09005aef846285ae/Source: 09005aef846285c8
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2012 Micron Technology, Inc. All rights reserved.

}lcro n TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
Enabling Buffered Programing Functionality in 2.4.x Kernels
]

#ifdef CONFIG_TANGO2

}
#endif

if (need_resched()) {

cfi_spin_unlock (chip->mutex) ;

yield();
cfi spin lock (chip->mutex) ;
} else
udelay (1) ;

} while(!'time_ after(jiffies, timeo));

if('ret && time_after(jiffies, timeo))

{

printk (KERN_WARNING "Waiting for write to complete
timed out in do_write_ buffer.");

ret = -EIO;
}
if(ret == -EIO) {
if((dgl & status) == dql) {

printk("Flash write to Buffer aborted @ 0x%1lx =
0x%x\n", adr, status);

cfi send gen_cmd(0xAA, cfi->addr unlockl, chip->start,
map, cfi, cfi->device_type, NULL);

cfi_send gen_cmd (0x55, cfi->addr _unlock2, chip->start,
map, cfi, cfi->device_type, NULL);

cfi_send gen_cmd (0xF0, cfi->addr_unlockl, chip->start,
map, cfi, cfi->device_type, NULL);

} else {

printk("Flash write to buffer failed @ 0x%1lx =
0x%$x\n", adr, status);

cfi_write(map, CMD(0xF0), chip->start);

DISABLE VPP (map) ;

PDF: 09005aef846285ae/Source: 09005aef846285¢8 Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 6 ©2012 Micron Technology, Inc. All rights reserved.

Mcro n TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash

Enabling Buffered Programing Functionality in 2.4.x Kernels
]

chip->state = FL READY;
wake_up (&chip->wq) ;

cfi_spin unlock (chip->mutex) ;

return ret;

}

To export the new write buffer feature to the MTD user, the following modifications must
be applied to the cfi cmdset 0002.c file:

@@ -33,6 +33,9 @@
#include <linux/mtd/cfi.h>

#define AMD BOOTLOC_BUG
+#define DEBUG_CFI_FEATURES
+#define MAXCIR

+//#define FORCE_SINGLE WRITE

#ifdef CONFIG_MTD CFI_AMDSTD RETRY
@@ -82,6 +85,7 @@ do { \

static int cfi_amdstd read (struct mtd _info *, loff t, size_ t,
size t *, u_char ¥*);

static int cfi_amdstd write(struct mtd_info *, loff t, size_ t,
size_t *, const u_char ¥*);

+static int cfi_amdstd write_buffers(struct mtd_info *, loff t,
size_t, size_t *, const u_char ¥*);

static int cfi_amdstd_erase_ chip(struct mtd _info *, struct
erase_info ¥*);

static int cfi_amdstd erase_onesize(struct mtd_info *, struct
erase_info ¥*);

static int cfi_amdstd_erase_varsize(struct mtd_info *, struct
erase_info *);

@@ -362,7 +367,18 @@ static struct mtd_info
*cfi amdstd setup(struct map info *map)

else
mtd->erase = cfi_amdstd_erase_onesize;
mtd->read = cfi_amdstd read;
- mtd->write = cfi_amdstd write;
+#ifndef FORCE SINGLE WRITE
+ if(cfi->cfig->BufWriteTimeoutTyp)

PDF: 09005aef846285ae/Source: 09005aef846285¢8 Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 7 ©2012 Micron Technology, Inc. All rights reserved.

Aicron

TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
Enabling Buffered Programing Functionality in 2.4.x Kernels
]

+ {

+ printk("Using buffer write method\n");
+ mtd->write = cfi_amdstd write buffers;

+ } else {

+#endif

+ printk("Using word write method\n");

+ mtd->write = cfi_amdstd write;

+#ifndef FORCE_SINGLE_WRITE

+

}

+#endif

break;

default:

@@ -968,6 +1129,81 @@ static int cfi_amdstd write (struct
mtd_info *mtd, loff t to , size_ t len, size_

return O;

+static int cfi_amdstd write_buffers (struct mtd _info *mtd,
loff t to , size_t len, size t *retlen, const u_char *buf)

+{

+ struct map_info *map = mtd->priv;

+ struct cfi_private *cfi = map->fldrv_priv;

+ int wbufsize = CFIDEV_INTERLEAVE << cfi->cfig->MaxBuf-
WriteSize;

+ int ret = 0;

+ int chipnum;

+ unsigned long ofs;

+

+ /* code derived from

cfi cmdset 000l.c:cfi_intelext write_words */

+ + + 4+ + o+ 4+ o+

*retlen = 0;
if ('len)

return O;

chipnum = to >> cfi->chipshift;
ofs = to - (chipnum << cfi->chipshift);

/* If it's not bus-aligned, do the first word write */

PDF: 09005aef846285ae/Source: 09005aef846285c8
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN

Micron Technology, Inc., reserves the right to change products or specifications without notice.
8 ©2012 Micron Technology, Inc. All rights reserved.

}lcro n TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
Enabling Buffered Programing Functionality in 2.4.x Kernels

+ + + 4+ + + F + + + + o+ F o+ o+ + o+ + o+ o+

to write...

+ 4+ + + + + + + + + + + + + + +

if (ofs & (CFIDEV_BUSWIDTH-1)) {

ret

buf

len

size t local_len = (-ofs) & (CFIDEV_BUSWIDTH-1);
if (local_len > len)
local_len = len;
= cfi_amdstd write(mtd, to, local_len,
retlen, buf);

if (ret)

return ret;
ofs += local_len;
+= local_len;

-= local_len;

if (ofs >> cfi->chipshift) {

chipnum ++;

ofs = 0;
if (chipnum == cfi->numchips)
return O;

/* Write buffer is worth it only if more than one word

*/

while(len > CFIDEV BUSWIDTH) {

int

/* We must not cross write block boundaries */

size = wbufsize - (ofs & (wbufsize-1));

if (size > len)
size = len & ~(CFIDEV_BUSWIDTH-1);
ret = do_write buffer (map, &cfi->chips[chipnum],
ofs, buf, size);
if (ret)

return ret;

ofs += size;
buf += size;
(*retlen) += size;

len -= size;

PDF: 09005aef846285ae/Source: 09005aef846285c8
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN

Micron Technology, Inc., reserves the right to change products or specifications without notice.
9 ©2012 Micron Technology, Inc. All rights reserved.

}lcro n TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
Enabling Buffered Programing Functionality in 2.4.x Kernels

+ + + + + + + + o+ + o+ o+

>chipshift),

+ + + 4+ + o+ 4+ o+

—

/*

if (ofs >> cfi->chipshift) {
chipnum ++;

ofs = 0;

if (chipnum == cfi->numchips)
return 0;

}

}

/* ... and write the remaining bytes */
if (len > 0) {
size_t local_retlen;

ret = cfi_amdstd _write(mtd, ofs + (chipnum << cfi-

len, &local_retlen, buf);
if (ret)

return ret;

(*retlen) += local_retlen;

}

return O;

* Handle devices with one erase region, that only implement

PDF: 09005aef846285ae/Source: 09005aef846285c8
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN

Micron Technology, Inc., reserves the right to change products or specifications without notice.
1 O ©2012 Micron Technology, Inc. All rights reserved.

}lcro n TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
Enabling 1KB Buffered Programing for M29EW Devices

Enabling 1KB Buffered Programing for M29EW Devices

The M29EW device has a larger buffer size than the S29GL. As summarized in Table 1 on
page 1, the size of the buffer is respectively 1KB for the M29EW and 32 bytes or 64 bytes
for the S29. Typically, larger buffer sizes result in increased performance. The MTD
driver automatically supports the 1KB buffer size (when the Flash memory is used in 16-
bit mode) in kernel version 2.6.13 and later. Enabling the larger buffer size in older
versions of the kernel requires a code modification, which is shown in the following
example.

Apply this path in themtd/cfi.hfile:

- static inline map word cfi_build cmd(u_char cmd, struct
map_info *map, struct cfi_private *cfi)

+ static inline map word cfi build cmd(u_long cmd, struct
map_info *map, struct cfi private *cfi)

PDF: 09005aef846285ae/Source: 09005aef846285¢8 Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 1 1 ©2012 Micron Technology, Inc. All rights reserved.

}lcro n TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
Enabling 1KB Buffered Programing for M29EW in U-Boot

Enabling 1KB Buffered Programing for M29EW in U-Boot

As previously described, M29EW devices have a larger buffer size than S29GL devices.
The size of the buffer is respectively 1KB for M29EW and 32 bytes or 64 bytes for the S29
(see Table 1 on page 1). Typically, larger buffer sizes result in increased performance.

Enabling the larger buffer size in U-Boot requires a code modification, which is shown in
the following example.

Micron has developed several patches for the different versions of U-Boot that are avail-
able on demand for customers. However, the logic behind the modification is similar for
each version, and it is possible to port one available patch for a specific version of U-
Boot into a different version. The following code defines a patch developed for U-Boot
1.3.1.

diff -rupN a/drivers/mtd/cfi_flash.c b/drivers/mtd/cfi_flash.c

--- a/drivers/mtd/cfi_flash.c2007-12-06 10:21:19.000000000 +0100

+++ b/drivers/mtd/cfi_flash.c2011-03-21 14:41:49.000000000 +0100

@@ -184,8 +184,8 @@ flash info_t flash_info[CFG_MAX FLASH BA

typedef unsigned long flash sect_t;

static void flash add byte (flash _info t * info, cfiword t * cword, uchar c);
-static void flash make _cmd (flash_info_t * info, uchar cmd, void *cmdbuf) ;

-static void flash write_cmd (flash _info_t * info, flash sect_t sect, uint off-
set, uchar cmd) ;

+static void flash make_cmd (flash_info_t * info, ulong cmd, void *cmdbuf) ;

+static void flash write cmd (flash_info t * info, flash sect t sect, uint off-
set, ulong cmd) ;

static void flash unlock_seq (flash_info_t * info, flash sect_t sect);

static int flash_isequal (flash_info_t * info, flash_sect_t sect, uint offset,
uchar cmd) ;

static int flash isset (flash_info_t * info, flash sect t sect, uint offset,
uchar cmd) ;

@@ -903,7 +903,7 @@ static void flash add byte (flash _info t

* make a proper sized command based on the port and chip widths
*/
-static void flash make cmd (flash _info _t * info, uchar cmd, void *cmdbuf)
+/*static void flash make cmd (flash_info_t * info, uchar cmd, void *cmdbuf)
{
int i;
uchar *cp = (uchar *) cmdbuf;
@@ -914,12 +914,33 @Q static void flash make cmd (flash info_t
for (1 = 1; i <= info->portwidth; i++)
#endif
*cp++ = (i & (info->chipwidth - 1)) ? '\0' : cmd;
+}*/

PDF: 09005aef846285ae/Source: 09005aef846285¢8 Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 1 2 ©2012 Micron Technology, Inc. All rights reserved.

}lcro n TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
Enabling 1KB Buffered Programing for M29EW in U-Boot

+
+static void flash make_cmd (flash_info_t * info, ulong cmd, void *cmdbuf)
+{
+ int i;
+ int cword offset;
+ int cp_offset;
+ uchar val;
+ uchar *cp = (uchar *) cmdbuf;
+
+ for (i = info->portwidth; i > 0; i--){
+ cword offset = (info->portwidth-i)%info->chipwidth;
+#if defined(__ LITTLE_ENDIAN) || defined(CFG_WRITE_SWAPPED DATA)
+ cp_offset = info->portwidth - i;
+ val = *((uchar*)&cmd + cword offset);
+#else
+ cp_offset =i - 1;
+ val = *((uchar*)&cmd + sizeof (ulong) - cword offset - 1);
+#endif
+ cplcp_offset] = (cword offset >= sizeof (ulong)) ? 0x00 : val;
+ }
}

/*

* Write a proper sized command to the correct address

*/
-static void flash write _cmd (flash_info_t * info, flash sect_t sect, uint off-

set, uchar cmd)
+static void flash write cmd (flash_info t * info, flash sect t sect, uint off-
set, ulong cmd)

{

volatile cfiptr t addr;

@@ -1496,7 +1517,7 QQ@ static int flash write cfibuffer (flash_

break;
case FLASH CFI_16BIT:
cnt = len >> 1;

- flash write _cmd (info, sector, O, (uchar) cnt - 1);

+ flash write_cmd (info, sector, 0, c¢nt - 1);

while (cnt-- > 0) *dst.wp++ = *src.wp++;
break;
case FLASH CFI_32BIT:

PDF: 09005aef846285ae/Source: 09005aef846285¢8 1 3 Micron Technology, Inc., reserves the right to change products or specifications without notice.

tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN

©2012 Micron Technology, Inc. All rights reserved.

Mcro n TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash

Enabling Buffered Programming for M29EW in x8 Mode

Enabling Buffered Programming for M29EW in x8 Mode

M29EW Flash memory can work in two modes: x8 mode and x16 mode. The two modes
refer to the Flash data bus size of the Flash, which is respectively 8 bits and 16 bits. The
behavior of the two modes is similar, except for the buffer size, which for the x8 mode is
set to 256 bytes instead of 1024 bytes. This causes a problem because in the CFI, the
value related to the buffer size is set to 1024 bytes independently on the data bus size.
This means that when M29EW is used in x8 mode, the Linux probe function reads the
buffer size from the CFI and sets the internal structures to perform a program that fills
1024 bytes of buffer. The program fails as a result. A code modification is required to
avoid this issue.

Micron has developed several patches for different kernels that are available on demand
for customers. However, the logic behind the modification is similar for each kernel, and
it is possible to port one available patch for a specific kernel version into a different
kernel. The patch is also submitted to the Linux communities, and upon the approval it
is made available for all future kernel deliveries. The following code defines a patch
developed and validated for the 2.6.30 Linux kernel:

From: Massimo Cirillo <maxcir@gmail.com>

This patch fixes a problem related to an incorrect value con-
tained in the CFI

of M29EW devices family. The incorrect CFI field is MaxBufWrite-
Size that

should be 0x8 if the device is used in 8bit mode, whereas the
value read

out from CFI is OxA.

Signed-off-by: Massimo Cirillo <maxcir@gmail.com>

diff --git a/drivers/mtd/chips/cfi_probe.c b/drivers/mtd/chips/
cfi_probe.c

old mode 100644

new mode 100755

index e63e674..5730201

--- a/drivers/mtd/chips/cfi_probe.c
+++ b/drivers/mtd/chips/cfi_probe.c

@@ -158,6 +158,9 @@ static int _ xipram cfi_chip setup(struct
map_info *map,

__u32 base = 0;

int num erase_regions = cfi_ read query(map, base + (0x10 +
28) *ofs_factor) ;

int i;
+ int extendedIdl = O;
+ int extendedId2 = O0;

+ int extendedId3

I
o

PDF: 09005aef846285ae/Source: 09005aef846285¢8 Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 1 4 ©2012 Micron Technology, Inc. All rights reserved.

Aicron

TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
Enabling Buffered Programming for M29EW in x8 Mode

xip enable (base, map, cfi);
#ifdef DEBUG_CFI

@@ -195,6 +198,15 @@ static int _ xipram cfi_chip_ setup(struct
map_info *map,

cfi->mfr = cfi_read_querylé6(map, base);
cfi->id = cfi_read queryl6 (map, base + ofs_factor);

}

+ /* Get device ID cycle 1,2,3 for Micron/ST devices */

+ if ((cfi->mfr == CFI_MFR NMX || cfi->mfr == CFI_MFR_ST)

+ && ((cfi->id & Oxff) == OxT7e)

+ && (lel6_to_cpu(cfi->cfig->P_ID) == 0x0002)) {

+ extendedIdl = cfi_read queryl6(map, base + 0x1l * ofs_ factor);
+ extendedId2 = cfi_read queryl6(map, base + Oxe * ofs_ factor);
+ extendedId3 = cfi_read queryl6(map, base + 0xf * ofs factor);
+

+

/* Get AMD/Spansion extended JEDEC ID */
if (cfi->mfr == CFI_MFR AMD && (cfi->id & Oxff) == 0x7e)
cfi->id = cfi_read query(map, base + Oxe * ofs_factor) << 8 |

@@ -213,6 +225,16 @R static int _ xipram cfi_chip setup(struct
map_info *map,

cfi->cfig->InterfaceDesc = lel6_to_cpu(cfi->cfig->Interface-
Desc) ;

cfi->cfiqg->MaxBufWriteSize = lel6_to_cpu(cfi->cfig->MaxBufWri-
teSize) ;

+ /* If the device is a M29EW used in 8-bit mode, adjust buffer
size */

+ if ((cfi->cfig->MaxBufWriteSize > 0x8) && (cfi->mfr ==
CFI_MFR NMX ||

+ cfi->mfr == CFI_MFR ST) && (extendedIdl == O0x7E) &&
+ (extendedId2 == 0x22 || extendedId2 == 0x23 || extendedId2 ==
0x28) &&

+ (extendedId3 == 0x01)) {
+ cfi->cfig->MaxBufWriteSize = 0x8;

+ pr_warning("Adjusted buffer size on Micron Flash M29EW fam-
ily") ;

+ pr_warning("in 8 bit mode\n");

+ }

PDF: 09005aef846285ae/Source: 09005aef846285c8
tn1307_patching_linux_kernel_for_m29.fm - Rev. F

1 5 Micron Technology, Inc., reserves the right to change products or specifications without notice.

112 EN ©2012 Micron Technology, Inc. All rights reserved.

Aicron

Note:

TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
Enabling Buffered Programming for M29EW in x8 Mode

+

#ifdef DEBUG_CFI
/* Dump the information therein */
print_cfi_ident(cfi->cfiq);

diff --git a/include/linux/mtd/cfi.h b/include/linux/mtd/cfi.h

old mode 100644

new mode 100755

index 88d3d8f..43d6a77

--- a/include/linux/mtd/cfi.h

+++ b/include/linux/mtd/cfi.h

@@ -522,6 +522,7 @Q struct cfi_fixup {

#define CFI_MFR_ATMEL 0x001F

#define CFI_MFR _SAMSUNG O0x00EC

#define CFI_MFR ST 0x0020 /* STMicroelectronics */

+#define CFI_MFR NMX 0x0089 /* Micron */

void cfi_ fixup(struct mtd_info *mtd, struct cfi_fixup* fixups);

No issues related to buffered programing have been experienced with M29W memory
devices.

PDF: 09005aef846285ae/Source: 09005aef846285c8
tn1307_patching_linux_kernel_for_m29.fm - Rev. F

1 6 Micron Technology, Inc., reserves the right to change products or specifications without notice.

112 EN ©2012 Micron Technology, Inc. All rights reserved.

Mcro n TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash

Enabling Buffered Programming for M29EW in x8 Mode in U-

Enabling Buffered Programming for M29EW in x8 Mode in U-Boot

As previously described, the buffer size of M29EW Flash memory in x8 mode is 256 bytes
instead of 1024 bytes. However, in the CFI the value related to the buffer size is set to
1024 bytes independently on the data bus size. As a result, if an M29EW device is used in
x8 mode, the U-Boot probe function, which reads the buffer size from the CFI, will set
internal structures to perform a program that fills 1024 bytes of buffer. The program fails
as a result. A code modification is required to avoid this issue.

Micron has developed several patches for the different versions of U-Boot that are avail-
able on demand for customers. However, the logic behind the modification is similar for
each version, and it is possible to port one available patch for a specific version of U-
Boot into a different version. The following code defines a patch developed for U-Boot
1.3.1.

diff -rupN a/drivers/mtd/cfi_ flash.c b/drivers/mtd/cfi_flash.c

--- a/drivers/mtd/cfi_flash.c2007-12-06 10:21:19.000000000 +0100
+++ b/drivers/mtd/cfi_flash.c2011-03-21 11:56:54.000000000 +0100
@@ -1320,6 +1320,15 Q@ ulong flash get size (ulong base, int ba

if ((info->interface == FLASH CFI_X8X16) && (info->chipwidth ==
FLASH CFI_BY8)) {

info->portwidth >>= 1;/* XXX - Need to test on x8/x16 in parallel. */

}
+
+ /* M29EW256M: buffer size workaround in x8 mode */
+ if (info->chipwidth == FLASH CFI_BYS8
+ && info->manufacturer_id == 0x89
+ && info->device_id == Ox7E
+ && (info->device_id2 == 0x2201 || info->device_id2==0x2301 || info-
>device_id2==0x2801)
&& info->buffer size > 256) {
info->buffer size = 256;
+ }
}

flash write_cmd (info, 0, 0, info->cmd reset):

PDF: 09005aef846285ae/Source: 09005aef846285¢8 Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 1 7 ©2012 Micron Technology, Inc. All rights reserved.

p' . TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
}Icron O0xFF Command Intolerance for M29W128G
]

OxFF Command Intolerance for M29W128G

M29W128G devices do not recognize the 0xFF command (software reset command for
0001 command-set-compliant Flash) as a valid command. In some systems, when 0xFF
isissued to the device, the M29W128G memory device will enter an unexpected state. As
aresult, it is necessary to add a 0xFO command systematically after a 0OxFF command.

To support this device, a software modification at the MTD level is required. In the
Cfi_util.c file, the function cfi_qry_mode_off(), which resets the device after the
autoselect mode, must have a 0xFO command after the 0xFF command.

Note: This fix makes the fixup_M29W128G_write_buffer() no longer necessary (it has been
included in the kernel release since version 2.6.30). Thus, it can be commented out.

The following code provides a patch for the 2.6.30 kernel. Similar modifications can be
done to backport the modifications to earlier kernels.

From: Massimo Cirillo <maxcir@gmail.com>

The M29W128G Micron Flash devices are intolerant to any OxFF com-
mand:

in the Cfi_util.c the function cfi_gry mode off() (that resets
the device

after the autoselect mode) must have a 0xFO command after the
OxFF command.

This fix solves also the cause of the
fixup M29W128G_write_buffer() fix,

that can be removed now.

The following patch applies to 2.6.30 kernel.

Signed-off-by: Massimo Cirillo <maxcir@gmail.com>
Acked-by: alexey Korolev <akorolev@infradead.org>

diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/
chips/cfi_cmdset _0002.c

old mode 100644

new mode 100755

index 6lea833..94bbé6le

--- a/drivers/mtd/chips/cfi_cmdset 0002.c
+++ b/drivers/mtd/chips/cfi_cmdset 0002.c

@@ -282,16 +282,6 @@ static void fixup s29gl032n_sectors(struct
mtd_info *mtd,

}

-static void fixup M29W128G_write buffer (struct mtd_info *mtd,
void *param)

-1{

- struct map_info *map = mtd->priv;

PDF: 09005aef846285ae/Source: 09005aef846285¢8 Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 1 8 ©2012 Micron Technology, Inc. All rights reserved.

p' . TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
}Icron O0xFF Command Intolerance for M29W128G

struct cfi private *cfi = map->fldrv priv;
- if (cfi->cfig->BufWriteTimeoutTyp) {
- pr_warning("Don't use write buffer on ST Flash M29W128G\n");
- cfi->cfig->BufWriteTimeoutTyp = O;
-}
-1
static struct cfi_ fixup cfi_ fixup table[] = {
{ CFI_MFR ATMEL, CFI_ID ANY, fixup convert_atmel pri, NULL },
#ifdef AMD BOOTLOC BUG

@@ -308,7 +298,6 Q@ static struct cfi fixup cfi fixup table[] =
{

CFI_MFR AMD, 0x1301, fixup s29gl064n_sectors, NULL, },
CFI_MFR AMD, 0x1a00, fixup s29g1032n_sectors, NULL, },
CFI_MFR AMD, 0xla0l, fixup s29g1032n_sectors, NULL, },
CFI_MFR ST, O0x227E, fixup M29W128G write_ buffer, NULL, },
#if !'FORCE_WORD_WRITE

{ CFI_MFR _ANY, CFI_ID_ANY, fixup_use write_buffers, NULL, },
#endif

diff --git a/drivers/mtd/chips/cfi_util.c b/drivers/mtd/chips/
cfi_util.c

old mode 100644

new mode 100755

index 34d40e2..8b87652

--- a/drivers/mtd/chips/cfi_util.c

e e e)

+++ b/drivers/mtd/chips/cfi_util.c
@@ -81,6 +81,10 @R void _ xipram cfi_gry mode off (uint32_t base,
{

cfi send gen cmd(0xFO0, 0, base, map, cfi, cfi->device_type,
NULL) ;

cfi send gen cmd(OxFF, 0, base, map, cfi, cfi->device_type,
NULL) ;

+ /* M29W128G devices require an additional reset command
+ when exit gry mode */

+ if ((cfi->mfr == CFI_MFR ST) && (cfi->id == 0x227E || cfi->id
== 0x7E))

+ cfi_send gen cmd(0xFO0, 0, base, map, cfi, cfi->device_type,
NULL)

}
EXPORT_SYMBOL GPL(cfi_qry mode off);

PDF: 09005aef846285ae/Source: 09005aef846285¢8 Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 1 9 ©2012 Micron Technology, Inc. All rights reserved.

Aicron

TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
Correcting Erase Suspend Hang Ups
]

Correcting Erase Suspend Hang Ups

Some revisions of the M29EW suffer from erase suspend hang ups. In particular, it can
occur when the sequence Erase Confirm -> Suspend -> Program -> Resumesequence
causes a lockup due to internal timing issues. The consequence is that the erase cannot
be resumed without inserting a dummy command after programming and prior to
resuming. If the erase suspend is not required, the user can enqueue a READ or
PROGRAM operation that is required when the Flash device is erasing a block. This is
done by applying the following code modification into the get_chip function in the
cfi_cmdset_002.c file:

case FL_ERASING:

- if (mode == FL_WRITING)

+ if ((mode == FL WRITING) || (mode == FL_READY))
goto sleep;

This patch can be applied to all 2.6.x versions of the kernel. The erase suspend feature is
not enabled when using a 2.4.x version of the kernel.

If the erase feature is required, the work-around is to issue a dummy write cycle that
writes an FO command code before the RESUME command.

The following code, which is applied to the cfi_cmdset_0002.c file, is a patch validated
for kernel version 2.6.23.17:

diff --git a/drivers/mtd/chips/cfi_cmdset 0002.c b/drivers/mtd/
chips/cfi_cmdset 0002.c

old mode 100644

new mode 100755

index 1£64458..c06da03

--- a/drivers/mtd/chips/cfi_cmdset 0002.c
+++ b/drivers/mtd/chips/cfi_cmdset 0002.c

@@ -551,6 +551,11 @@ static int get_chip(struct map_info *map,
struct flchip *chip, unsigned long adr

* there was an error (so leave the erase
* routine to recover from it) or we trying to
* use the erase-in-progress sector. */

+ /* before resume, insert a dummy OxFO cycle for Micron M29EW
devices */

+ if ((cfi->mfr == 0x0089) &&

+ (((cfi->device_type == CFI_DEVICETYPE X8) && ((cfi->id & Oxff)
== 0x7e))

+ ||l ((cfi->device_type == CFI_DEVICETYPE X16) && (cfi->id ==
0x227e))))

+ map write(map, CMD(0xF0), chip->in_progress block addr);

map_write (map, CMD(0x30), chip-
>in progress_block_addr) ;

chip->state = FL_ERASING;

PDF: 09005aef846285ae/Source: 09005aef846285c8
tn1307_patching_linux_kernel_for_m29.fm - Rev. F

Micron Technology, Inc., reserves the right to change products or specifications without notice.
112 EN 20 ©2012 Micron Technology, Inc. All rights reserved.

Aicron

TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
Correcting Erase Suspend Hang Ups
]

chip->oldstate = FL READY;

@@ -600,6 +605,11 @R static void put chip(struct map info *map,
struct flchip *chip, unsigned long ad

switch (chip->oldstate) {
case FL_ERASING:
chip->state = chip->oldstate;

+ /* before resume, insert a dummy OxFO cycle for Micron M29EW
devices */

+ if ((cfi->mfr == 0x0089) &&

+ (((cfi->device_type == CFI_DEVICETYPE X8) && ((cfi->id & Oxff)
== 0x7e))

+ || ((cfi->device_type == CFI_DEVICETYPE X16) && (cfi->id ==
0x227e))))

+ map write(map, CMD(0xF0), chip->in_progress block addr);
map_write (map, CMD(0x30), chip->in progress_block addr);
chip->oldstate = FL READY;
chip->state = FL_ERASING;

@@ -743,6 +753,11 @R static void __ xipram xip udelay(struct
map_info *map, struct flchip *chip,

local_irq disable();

/* Resume the write or erase operation */

+ /* before resume, insert a dummy OxXF0 cycle for Micron M29EW
devices */

+ if ((cfi->mfr == 0x0089) &&

+ (((cfi->device_type == CFI_DEVICETYPE X8) && ((cfi->id & Oxff)
== 0x7e))

+ || ((cfi->device_type == CFI_DEVICETYPE X16) && (cfi->id ==
0x227e))))

+ map write(map, CMD(0xFO0), adr);
map_write (map, CMD(0x30), adr);
chip->state = oldstate;

start = xip currtime();

PDF: 09005aef846285ae/Source: 09005aef846285c8

Micron Technology, Inc., reserves the right to change products or specifications without notice.

tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 2 1 ©2012 Micron Technology, Inc. All rights reserved.

Aicron

TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
Resolving the Delay After Resume Issue
]

Resolving the Delay After Resume Issue

Patch for M29EW D

Some revisions of the M29EW (for example, A1 and A2 step revisions) are affected by a
problem that could cause a hang up when an ERASE SUSPEND command is issued after
an ERASE RESUME operation without waiting for a minimum delay. The result is that
once the ERASE seems to be completed (no bits are toggling), the contents of the Flash
memory block on which the erase was ongoing could be inconsistent with the expected
values (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84 values), causing
a consequent failure of the ERASE operation.

The occurrence of this issue could be high, especially when file system operations on the
Flash are intensive. As a result, it is recommended that a patch be applied. Intensive file
system operations can cause many calls to the garbage routine to free Flash space (also
by erasing physical Flash blocks) and as a result, many consecutive SUSPEND and
RESUME commands can occur.

The problem disappears when a delay is inserted after the RESUME command by using
the udelay (...) function available in Linux.

The DELAY value must be tuned based on the customer’s platform. The maximum value
that fixes the problem in all cases is 500us. But, in our experience, a delay of 30ps to 50us
is sufficient in most cases.

When there is suspicion that the root cause of a customer’s problem can be this issue, we
recommend to:

1. Set the delay to the maximum value.

2. Check if the problem occurs again.

3. If the problem does not occur again, try a lower DELAY value.

evices

The following patch for M29EW devices is compliant for the 2.6.28 kernel release:
--- a/drivers/mtd/chips/cfi_cmdset 0002.c

+++ b/drivers/mtd/chips/cfi_cmdset_0002.c

@@ -682,6 +682,7 @R static void put_chip(struct map_info *map,
struct flchip *chip, unsigned long ad

case FL_ERASING:
chip->state = chip->oldstate;
map_write (map, CMD(0x30), chip->in progress_block_addr) ;
+ udelay (DELAY) ;
chip->oldstate = FL READY;
chip->state = FL_ERASING;

break;

PDF: 09005aef846285ae/Source: 09005aef846285c8
tn1307_patching_linux_kernel_for_m29.fm - Rev. F

Micron Technology, Inc., reserves the right to change products or specifications without notice.
112 EN 22 ©2012 Micron Technology, Inc. All rights reserved.

0x554 Command Tolerance

(‘%Cro n TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash

0x554 Command Tolerance

Flash memory devices that are compliant with the 0002 command set can work in 8-bit
and 16-bit modes. The Flash offsets for the first two write cycles of the autoselect
command sequence are 0xAAA/0x555 for the 8-bit mode and 0x555/2AA for the 16-bit
mode. Kernel versions 2.6.11 and older were used to write the autoselect commands at
the 16-bit mode addresses for both modes (0x555/2AA addresses). The unique package
for these types of Flash devices results in the addresses being shifted by 1 when the 8-bit
mode is used (the data pin DQ15 becomes the A-1 address pin for the 8-bit mode). As a
result, the internal address 0x555/2AA became 0xAAA/0x554.

Typically, Micron Flash memory devices do not accept 0x554 as a valid command
address for the autoselect sequence, resulting in a Flash operation failure. To avoid this
problem, a patch must be applied to the cfi.h file. In particular, the implementation of
the cfi_build_cmd_addr function must be modified as specified in the following text:

static inline uint32_t cfi_build_cmd_addr (uint32_t cmd_ ofs,

struct map_info *map, struct cfi_private *cfi)

{
unsigned bankwidth = map bankwidth (map) ;
unsigned interleave = cfi_interleave (cfi);
unsigned type = cfi->device_type;

uint32_t addr;
addr = (cmd ofs * type) * interleave;

/* Modify the unlock address if we are in compatiblity mode.
* For 1l6bit devices on 8 bit busses
* and 32bit devices on 16 bit busses

* set the low bit of the alternating bit sequence of the
address.

*/

if (((type * interleave) > bankwidth) &&
((uint8_t)cmd ofs == Oxaa))

addr |= (type >> 1) *interleave;

return addr;

PDF: 09005aef846285ae/Source: 09005aef846285¢8 Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 23 ©2012 Micron Technology, Inc. All rights reserved.

p' . TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
}Icron Summary of Available Patches
]

Summary of Available Patches

Table 2 provides a list of available patches related to the primary MTD incompatibilities.

Table 2: Summary of Available Patches

Issue Affected Kernel Patch Availability
Buffered programing enablement 2.4.x 2.4.21
1KB buffered programming Version 2.6.13 and prior 2.6.12.6
2.4.30
2.4.25
x8 mode enabling Version 2.6.30 and prior 2.6.27
2.6.14
OxFF tolerance Version 2.6.30 and prior 2.6.8
2.6.14
2.6.22
Erase suspend hang up 2.4.x and 2.6.x 2.6.23
Delay after resume 2.4.x and 2.6.x 2.6.28
2.6.31

PDF: 09005aef846285ae/Source: 09005aef846285¢8 Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 24 ©2012 Micron Technology, Inc. All rights reserved.

¢ TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
(462' cron Reference Documentation
]

Reference Documentation

For additional information, refer to the migration guides for the Micron M29 Flash
memory devices, which are available here: http://www.micron.com/products/nor-
flash/parallel-nor-flash.

Conclusion

Micron recognizes the value of open source and the importance of supporting the open
source community. Support for Micron Flash memory devices are enabled by contrib-
uting regular patches and updates to the Linux MTD and Linux file systems.

To request support for specific Linux issues, software or incompatibility with Micron
Flash memory devices, contact your Micron representative or submit a request from
www.micron.com.

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
www.micron.com/productsupport Customer Comment Line: 800-932-4992
Micron, the Micron logo, and Axcell are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective
owners.

PDF: 09005aef846285ae/Source: 09005aef846285¢8 Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 2 5 ©2012 Micron Technology, Inc. All rights reserved.

http://www.micron.com/products/nor-flash/parallel-nor-flash
http://www.micron.com/products/nor-flash/parallel-nor-flash
mailto:prodmktg@micron.com
http://www.micron.com/
http://www.micron.com/support/productsupport.aspx

p' . TN-13-07 Patching the Linux Kernel and U-Boot for M29 Flash
}Icron Revision History

Revision History

* Added the “Enabling 1KB Buffered Programing for M29EW in U-Boot” section

* Added the “Enabling Buffered Programming for M29EW in x8 Mode in U-Boot”
section

¢ Rebranded document as a technical note

* Added the Resolving the Delay After Resume Issue section.
* Updated the Summary of Available Patches section.

Initial release authored by Giuseppe Russo and Massimo Cirillo.

PDF: 09005aef846285ae/Source: 09005aef846285¢8 Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn1307_patching_linux_kernel_for_m29.fm - Rev. F 1/12 EN 26 ©2012 Micron Technology, Inc. All rights reserved.

	Technical Note
	Introduction
	Comparison of Spansion GL and Micron M29
	Enabling Buffered Programing Functionality in 2.4.x Kernels
	Enabling 1KB Buffered Programing for M29EW Devices
	Enabling 1KB Buffered Programing for M29EW in U-Boot
	Enabling Buffered Programming for M29EW in x8 Mode
	Enabling Buffered Programming for M29EW in x8 Mode in U-Boot
	0xFF Command Intolerance for M29W128G
	Correcting Erase Suspend Hang Ups
	Resolving the Delay After Resume Issue
	Patch for M29EW Devices

	0x554 Command Tolerance
	Summary of Available Patches
	Reference Documentation
	Conclusion
	Revision History

