

Technical Note

Micron UFS Memory Health Report for Mobile Devices

Introduction

This technical note describes how to obtain the extended health report information for Micron's UFS devices listed in the table below. The extended health report information is accessed via proprietary vendor-unique (VU) commands issued through the SCSI interface of the UFS device.

Because UFS devices are Managed NAND components, and NAND cells are stressed by the continuous use of UFS devices, it is important to understand how usage affects the device and the device data. The extended health report is a resource that allows customers to monitor a device's media usage and the length of time that the device can be cycled.

The method of obtaining the extended health report information can be applied to the following Micron UFS devices.

Part Number	Density	Package	Package Code
MT29VZZZAD8FQFSL-046 W.G8K	64GB (2 x B16C) + 32Gb (2 x Z32M)	254-ball VFBGA, 11.5mm x 13.0mm x 0.9mm	SL
MT29VZZZAD9FQFSM-046 W.G9K	128GB (4 x B16C) + 32Gb (2 x Z32M)	254-ball VFBGA, 11.5mm x 13.0mm x 1.0mm	SM
MT29VZZZBD9FQKPR-046 W.G9J	128GB (4 x B16C) + 48Gb (4 x Z2BM)	254-ball TFBGA,	PR
MT29VZZZCD9FQKPR-046 W.G9L	128GB (4 x B16C) + 64Gb (4 x Z32M)	11.5mm x 13.0mm x 1.1mm	
MT29VZZZBDAFQKWL-046 W.G0J	256GB (8 x B16C) + 48Gb (4 x Z2BM)	254-ball TFBGA, 11.5mm x 13.0mm x 1.2mm	WL
MT29VZZZCDAFQKWL-046 W.G0L	256GB (8 x B16C) + 64Gb (4 x Z32M)	254-ball TFBGA, 11.5mm x 13.0mm x 1.2mm	WL
MTFC128GARATEK-WT	128GB (2 x B27B)	153-ball VFBGA, 11.5mm x 13.0mm x 0.9mm	EK
MTFC64GAXAUEA-WT	64GB (1 x B47R)	153-ball WFBGA,	EA
MTFC128GAXAUEA-WT	128GB (2 x B47R)	11.5mm x 13.0mm x 0.8mm	
MTFC256GAXAUEA-WT	256GB (4 x B47R)	_	
MT29VZZZ7D81SFSL-046 W.22B	64GB (1 x B47R) + 24Gb (2 x Z3BM)	254-ball VFBGA,	SL
MT29VZZZAD81SFSL-046 W.22C	64GB (1 x B47R) + 32Gb (2 x Z42M)	11.5mm x 13.0mm x 0.9mm	
MT29VZZZBD81SLSL-046 W.22D	64GB (1 x B47R) + 32Gb (2 x Z42M)	_	
MT29VZZZCD91SFSM-046 W.18C	128GB (2 x B47R) + 32Gb (2 x Z42M)	254-ball VFBGA,	SM
MT29VZZZBD91SLSM-046 W.17X	128GB (2 x B47R) + 32Gb (2 x Z42N) + 16Gb (1 x Z42M)	11.5mm x 13.0mm x 1.0mm	
MT29VZZZCD91SKSM-046 W.17Y	128GB (2 x B47R) + 64Gb (4 x Z42N)		
MT29VZZZBD91SKSM-046 W.12N	128GB (2 x B47R) + 48Gb (4 x Z3BM)		

Table 1: Micron UFS Devices List

CCM005-524338224-10502 tn2985_accessing_usf_health_report.pdf - Rev. E 05/2023 EN Products and specifications discussed herein are subject to change by Micron without notice.

Table 1: Micron UFS Devices List (Continued)

Part Number	Density	Package	Package Code
MT29VZZZBDA1SLPR-046 W.17Z	256GB (4 x B47R) + 32Gb (2 x Z42N) + 16Gb (1 x Z42M)	254-ball TFBGA, 11.5mm x 13.0mm x1.1mm	PR
MT29VZZZCDA1SKPR-046 W.181	256GB (4 x B47R) + 64Gb (4 x Z42N)		
MTFC128GAXATEA-WT	128GB (2 x B47R)	153-ball WFBGA, 11.5mm x 13.0mm x 0.8mm	EA
MTFC128GAXATHF-WT	128GB (2 x B47R)	153-ball WFBGA, 11.0mm x 13.0mm x 0.8mm	HF
MTFC256GAXATEA-WT	256GB (4 x B47R)	153-ball WFBGA, 11.5mm x 13.0mm x 0.8mm	EA
MTFC256GAXATHF-WT	256GB (4 x B47R)	153-ball WFBGA, 11.0mm x 13.0mm x 0.8mm	HF
MTFC512GAXATAM-WT	512GB (8 x B47R)	153-ball VFBGA, 11.5mm x 13.0mm x 1.0mm	AM
MTFC512GAXATHJ-WT	512GB (8 x B47R)	153-ball VFBGA, 11.0mm x 13.0mm x 1.0mm	HJ
MT30AZZZCD9ZTPWL-031 W.165	128GB (2 x B47R) + 64Gb (8 x Y31N)	297-ball TFBGA, 11.5mm x 13.0mm x 1.2mm	WL
MT30AZZZBC9ZTKXM-031 W.20S	128GB (2 x B47R) + 48Gb (4 x Y2BM)	297-ball VFBGA, 11.5mm x 13.0mm x 1.0mm	XM
MT30AZZZCDAZTPWL-031 W.16C	256GB (4 x B47R) + 64Gb (8 x Y31N)	297-ball TFBGA, 11.5mm x 13.0mm x 1.2mm	WL
MT30AZZZCDBZTPEQ-031 W.16D	512GB (8 x B47R) + 64Gb (8 x Y31N)	297-ball LFBGA, 11.5mm x 13.0mm x 1.3mm	EQ
MTFC128GBCAVHF-WT	128GB (2 x B47T)	153-ball WFBGA,	HF
MTFC256GBCAVHF-WT	256GB (4 x B47T)	11.0mm x 13.0mm x 0.8mm	
MTFC512GBCAVHE-WT	512GB (8 x B47T)	153-ball WFBGA, 11.0mm x 13.0mm x 0.9mm	HE
MT30AZZZBD90TKXM-031 W.197	128GB (2 x B47T) + 48Gb (4 x Y4BM)	297-ball VFBGA, 11.5mm x 13.0mm x 1.0mm	XM
MT30AZZZCD90TKXM-031 W.20T	128GB (2 x B47T) + 64Gb (4 x Y42M)	297-ball VFBGA, 11.5mm x 13.0mm x 1.0mm	XM
MT30AZZZCDA0TKQS-031 W.20V	256GB (4 x B47T) + 64Gb (4 x Y42M)	297-ball TFBGA, 11.5mm x 13.0mm x 1.1mm	QS
MT30AZZZDDA0TKQS-031 W.19Q	256GB (4 x B47T) + 96Gb (8 x Y4BM)	297-ball TFBGA,	QS
MT30AZZZDDA0TKQS-031 WL.19Q		11.5mm x 13.0mm x 1.1mm	
MT30AZZZEDA0TPWL-031 W.20W	256GB (4 x B47T) + 128Gb (8 x Y42M)	297-ball TFBGA,	WL
MT30AZZZEDA0TPWL-031 WN.20W	1	11.5mm x 13.0mm x 1.2mm	
MT30AZZZCDB0TKWL-031 W.20X	512GB (8 x B47T) + 64Gb (4 x Y42M)	297-ball TFBGA, 11.5mm x 13.0mm x 1.2mm	WL
MT30AZZZDDB0TPWL-031 W.19R	512GB (8 x B47T) + 96Gb (8 x Y4BM)	297-ball TFBGA,	WL
MT30AZZZDDB0TPWL-031 WL.19R	1	11.5mm x 13.0mm x 1.2mm	

TN-29-85: UFS Memory Health Report for Mobile Devices Introduction

Table 1: Micron UFS Devices List (Continued)

Part Number	Density	Package	Package Code
MT30AZZZEDB0TPEQ-031 W.20Z	512GB (8 x B47T) + 128Gb (8 x Y42M)	297-ball TFBGA,	EQ
MT30AZZZEDB0TPEQ-031 WN.20Z	1	11.5mm x 13.0mm x 1.3mm	
MTFC256GBEAXHF-WT	256GB (4 x B57T)	153-ball WFBGA, 11.0mm x 13.0mm x 0.8mm	HF
MTFC512GAYAXHF-WT	512GB (4 x B58R)	153-ball WFBGA, 11.0mm x 13.0mm x 0.8mm	
MTFC1TAYAXHE-WT	1024GB (8 x B58R)	153-ball VFBGA, 11.0mm x 13.0mm x 0.9mm	HE

Important Notes and Warnings

Micron Technology, Inc. ("Micron") reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions. This document supersedes and replaces all information supplied prior to the publication hereof. You may not rely on any information set forth in this document if you obtain the product described herein from any unauthorized distributor or other source not authorized by Micron.

Automotive Applications. Products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets. Distributor and customer/distributor shall assume the sole risk and liability for and shall indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting directly or indirectly from any use of non-automotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and conditions of sale between customer/distributor and any customer of distributor/customer (1) state that Micron products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting from any use of non-automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting from any use of non-automotive-grade products in automotive applications.

Critical Applications. Products are not authorized for use in applications in which failure of the Micron component could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("Critical Applications"). Customer must protect against death, personal injury, and severe property and environmental damage by incorporating safety design measures into customer's applications to ensure that failure of the Micron component will not result in such harms. Should customer or distributor purchase, use, or sell any Micron component for any critical application, customer and distributor shall indemnify and hold harmless Micron and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such critical application, whether or not Micron or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Micron product.

Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems, applications, and products using Micron products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAILURE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER'S SOLE RESPONSIBILITY TO DETERMINE WHETHER THE MICRON PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER'S SYSTEM, APPLICATION, OR PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included in customer's applications and products to eliminate the risk that personal injury, death, or severe property or environmental damages will result from failure of any semiconductor component.

Limited Warranty. In no event shall Micron be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort, warranty, breach of contract or other legal theory, unless explicitly stated in a written agreement executed by Micron's duly authorized representative.

Obtaining Health Report Data

Obtaining the report data requires using the SCSI commands WRITE BUFFER and READ BUFFER with opcodes 0x3B and 0x3C, respectively. The command details are given below, but in short, a VU command request is issued to the device via the WRITE BUFFER command. A READ BUFFER command is then used to retrieve the 512B data burst reply, which contains the health report data.

The table below shows the format for the WRITE BUFFER command. The READ BUFFER command is similar with the opcode 0x3C (byte 0). The VU operation must use the reserved bits of byte 1 in both WRITE and READ commands.

Command Sequence

Step 1

- 1. VU WRITE BUFFER command to request the Health Report information
- 2. Command descriptor block (CDB) for WRITE BUFFER: 3B E1 00 00 00 00 00 00 2C 00
- 3. VU parameter list data (0x2C == 44B)

Table 2: WRITE BUFFER Command

Byte				В	it						
Byte	7	6	5	4	3	2	1	0			
0		Operation code (3Bh)									
1	Reserved Mode										
2	Buffer ID										
3	(MSB)			Buffer	offset			(LSB)			
4											
5											
6	(MSB)			Parameter	list length			(LSB)			
7											
8											
9	Control										

Table 3: WRITE BUFFER Command Data

Byte	Data
0	0xFE
1	0x40
2	0x00
3	0x10
4	0x01
5-43	0x00

0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
FE	40	00	10	01	00	00	00	00	00	00	00	00	00	00	00
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00	00	00	00	00	00	00	00	00	00	00	00	90	00	90	66-

Step 2

- 1. VU READ BUFFER command to read the Health Report information
- 2. Command descriptor block (CDB) for READ BUFFER: 3C C1 00 00 00 00 00 02 00 00

Table 4: READ BUFFER Command Data

				B	it					
Byte	7	6	5	4	3	2	1	0		
0				Operation	code (3Ch)					
1	Reserved Mode									
2	Buffer ID									
3	(MSB)			Buffer	offset			(LSB)		
4										
5										
6	(MSB)			Parameter	list length			(LSB)		
7										
8										
9	Control									

Understanding Health Report Data

512B of data is acquired by the READ BUFFER command (0x200B).

Use the byte decode from Table below to evaluate the data.

Table 5: Health Report Output format for B16C- and B27B-based devices

HR Output Offset (bytes)	0	1	2	3	4	5	6	7	8	9	Α	в	с	D	E	F
0x00	Factory bad block count Factory bad block count		time block	Spa blo	Spare Reserved block block count count for SLC		Rese d bl	erve	Exha	usted for: TLC	Meta	data ption	Write amplification factor			
0x10	Mini		block (TLC	erase	Maxi	erase	Ave		block r TLC	erase		Reserved				
0x20	Minimum block erase for SLC				Maximum block erase for SLC						block r SLC	erase	Reserved			
0x30	Initialization count (success)			ount	Initialization count (failure)				Read reclaim count for SLC				Read reclaim count for TLC			
0x40			ata siz 100MB	-	Written data size (unit: 100MB)				SI	SPOR write fail SPOR recor count				very count		
0x50		VDET count UECC cour				count		Re	ad re	etry co	ount	Highest tempera- ture his- tory	Lowest tempera- ture his- tory	Power on highest temp hist	Power on lowest temp hist	
0x60	U	IC erro	or cou	nt	SER DED count					SEC	count	:		Rese	erved	
0x70	Reserved				Reserved				Reserved					Rese	erved	
		Rese	erved			Rese	erved		Reserved				Reserved			

Note: 1. Block counts are given in virtual blocks, not in discrete NAND blocks.

Table 6: Health Report Output format for B47R-, B47T-, B57T-, B58R-based devices

HR Output Offset (bytes)	0	1	2	3	4	5	6	7	8	9	Α	В	c	D	E	F		
0x00	FactoryRun-timebad blockbad blockcountcount		time block	Spare Reserved block block count count for SLC			Rese d bl cou for	erve ock unt	Exha	_	Meta data corruption am			Vrite lification actor				
0x10	Mini		block (TLC	erase	Maxi		rage	block (r TLC	erase		Reserved							
020	Mini		block (SLC	erase	Maxi	mum for	block (SLC	erase	Ave		block (r SLC	erase		Rese	erved			
030	Init		ion co cess)	unt	Initialization count (failure)						laim c r SLC	ount	Re	Read reclaim count for TLC				
040			ata siz 100MB	-	Written data size (unit: 100MB)						write f ount	fail	SPOR recovery count					
050	VDET count					Read retry count			unt	Highest tempera- ture his- tory	Lowest tempera- ture his- tory	Power on highest temp hist	Power on lowest temp hist					
060		ock unt	Exh aust ed life for EM1	Rese rved	W fac for I	tor	Rese	rved		for	data si EM1 100M		Write data size for EM1 (unit: 10			100MB)		
070	Mini		block (EM1	erase	Maximum block erase for EM1				Ave		block EM1	erase	Rea	ad reclaim	count for E	M1		
080		Rese	erved			Rese	erved		Reserved					Rese	erved			
090	U	IC erro	or cou	nt	SER DED count				SEC count					Rese	erved			
0A0		Rese	rved		Reserved				Reserved				Reserved					
		•																
		Rese	rved			Rese	rved			Res	erved		Reserved					

Note: 1. Block counts are given in virtual blocks, not in discrete NAND bloc
--

TN-29-85: UFS Memory Health Report for Mobile Devices Understanding Health Report Data

Table 7: Health Report Decode

Name	Description
Factory bad block count	These counters indicate the total number of bad blocks produced during manufac-
Run-time bad block count	turing (factory bad block count), the total number of bad blocks generated after manufacturing (run-time bad block count), and the number of remaining spare
Spare block count	blocks to allow bad blocks replacement. Block counts are given in virtual blocks
Reserved block count for SLC	Blocks reserved for system bad blocks replacement (Note 2)
Reserved block count for TLC	Blocks reserved for user bad blocks replacement (Note 3)
Exhausted life for SLC	SLC block life time used
Exhausted life for TLC	TLC block life time used
Meta data corruption	This field indicates if there is meta data corruption. If value is 0: no meta data corruption If value is 1–FFFFh: corruption error code
Write amplification factor	WA= (SLC EC + TLC EC*3)*100/ (Write Data Size/SLC VB size) EA= (SLC EC + TLC EC)*300/ (Write Data Size/SLC VB size) (Note 4)
Minimum/Maximum/Average block erase In TLC	These counters return the minimum/maximum/average number of block erases in host data area
Minimum/Maximum/Average block erase In SLC	These counters return the minimum/maximum/average number of block erases in system area
Initialization count (success)	The counter indicates the number of successful initializations; the increment is triggered by clean power down (or PON). The increment is visible after the next successful power on
Initialization count (failure)	The counter indicates the number of successful initializations; the increment is triggered by dirty power down (or SPOR). The increment is visible after the next successful power on
Read reclaim count for SLC	This count increases whenever NAND reliability features are triggered on system blocks
Read reclaim count for TLC	This count increases whenever NAND reliability features are triggered on user blocks
Read data size (presentation unit: 100MB)	This counter indicates the host cumulative read data size (units of 100MB). Read data is calculated as host cumulative read data x 100MB
Written data size (presentation unit: 100MB)	This counter indicates the host cumulative written data size (units of 100MB). Written data is calculated as host cumulative written data x 100MB
SPOR write fail count	The counter indicates the number of write operations interrupted by sudden power off (SPOR). The increment is visible after the next successful power on
SPOR recovery count	The counter indicates the cumulative number of dirty power down (or SPOR)
VDET count	The counter indicates the number of low voltage detections (Note 5)
UECC count	The counter indicates the cumulative number of UECC events
Read retry count	The counter indicates the cumulative number of read retry events
History highest temperature	This field indicates the maximum temperature (in Celsius degrees) recorded in the device after previous reset
History lowest temperature	This field indicates the minimum temperature (in Celsius degrees) recorded in the device after previous reset
Power-on highest temperature	This field indicates the maximum temperature (in Celsius degrees) recorded in the device after being used

TN-29-85: UFS Memory Health Report for Mobile Devices Understanding Health Report Data

Table 7: Health Report Decode (Continued)

Name	Description
Power-on lowest temperature	This field indicates the minimum temperature (in Celsius degrees) recorded in the device after being used
Reserved block count for EM1	Same as reserved block count for SLC
Exhausted life for EM1	EM1 block life time used
Write amplification factor for EM1	WA= EM1 EC*100/ (Write Data Size/SLC VB size) EA= EM1 EC*100/ (Write Data Size/SLC VB size)
Read data size for EM1 (presentation unit: 100MB)	This counter indicates the cumulative read data size for EM1 (units of 100MB). Read data is calculated as cumulative read data x 100MB
Minimum/Maximum/Average block erase for EM1	These counters return the minimum/maximum/average number of block erases in enhanced memory area
Read reclaim count for EM1	This count increases whenever NAND reliability features are triggered on blocks of enhanced memory area
UIC error count	This count indicates the number of UFS interconnect layer errors. The increment is triggered by link error recorded by the controller
SER DED Count	This count indicates the number of SRAM failures that cannot be recovered
SEC count	This count indicates the number of SRAM failures that can be recovered

Notes: 1. Fields data have to be read from the most significant byte to the less significant byte

- 2. Not used for UFS 4.0 compatible devices
- 3. Reserved blocks are used for both system and user bad blocks replacement for UFS 4.0 compatible devices

4. Write amplification factor must be decimalized and then divided by 100. Starting from B47T-based devices onwards, this fields records EA

5. V_{CCQ} low voltage detection count is supported by UFS 3.1 and UFS 4.0 compatible devices; V_{CCQ2} low voltage detection count is supported by UFS 2.2 compatible devices

Revision History

Rev. E – 05/2023

- Removed obsolete part numbers from Micron UFS Devices List table
- · Health Report Output format tables differentiated on the NAND-based devices
- Tables Health Report: initial values and Health Byte Report Details replaced by Health Report Decode table

Rev. D – 05/2022

• Updated Table format and latest Health Report byte definitions

Rev. C - 05/2019

• Added the table Health Report: Initial Values

Rev. B – 12/2017

• Added in additional health decode byte description

Rev. A - 11/2017

• Initial release

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006 208-368-4000, micron.com/support Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.