Technical Note

Adding ECC to a Data Bus with DDR4 x16 Components

Introduction

Systems with lower density memory requirements use x16 DRAM components to save space, cost and power. System designers who also have high data integrity requirements may want to implement ECC using an extra 8-bit data path, making for some awkward combinations of components on the data bus. DDR4 creates additional challenges caused by the different number of bank groups on x8 and x16 components. This technical note provides guidance for adding ECC on a single-rank, point-to-point DDR4 data bus when using x16 components.

Note: All tables in this technical note are based on current production DDR4 devices available at the time of publishing: 8Gb Rev. R (1α Z41C) and 16Gb Rev. F (1α Z42B). Component area is based on package size only and does not include board area needed for signal routing.
Important Notes and Warnings

Micron Technology, Inc. ("Micron") reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions. This document supersedes and replaces all information supplied prior to the publication hereof. You may not rely on any information set forth in this document if you obtain the product described herein from any unauthorized distributor or other source not authorized by Micron.

Automotive Applications. Products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets. Distributor and customer/distributor shall assume the sole risk and liability for and shall indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting directly or indirectly from any use of non-automotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and conditions of sale between customer/distributor and any customer of distributor/customer (1) state that Micron products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting from any use of non-automotive-grade products in automotive applications.

Critical Applications. Products are not authorized for use in applications in which failure of the Micron component could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("Critical Applications"). Customer must protect against death, personal injury, and severe property and environmental damage by incorporating safety design measures into customer's applications to ensure that failure of the Micron component will not result in such harms. Should customer or distributor purchase, use, or sell any Micron component for any critical application, customer and distributor shall indemnify and hold harmless Micron and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such critical application, whether or not Micron or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Micron product.

Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems, applications, and products using Micron products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAILURE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER’S SOLE RESPONSIBILITY TO DETERMINE WHETHER THE MICRON PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER’S SYSTEM, APPLICATION, OR PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included in customer’s applications and products to eliminate the risk that personal injury, death, or severe property or environmental damages will result from failure of any semiconductor component.

Limited Warranty. In no event shall Micron be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort, warranty, breach of contract or other legal theory, unless explicitly stated in a written agreement executed by Micron’s duly authorized representative.
The most common data widths for adding ECC to data paths are x32 and x64. Table 1 shows the three lowest densities that can be configured on a single-rank 32-bit DDR4 bus; Table 2 shows the same information for a 64-bit DDR4 bus. The lowest density is always achieved using x16 components, but there are two ways to configure the next highest density. Figures 1 and 2 outline how the components are connected for each bus width.

Table 1: DDR4 Single-Rank x32 Bus Configuration Options

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Density</th>
<th>Component Area</th>
<th>(\text{I}_{\text{DD7}}) @ 3200 MT/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>8Gb x16 (2 pcs)</td>
<td>2GB</td>
<td>195 mm² (Rev. R)</td>
<td>450 mA</td>
</tr>
<tr>
<td>16Gb x16 (2 pcs)</td>
<td>4GB</td>
<td>195 mm² (Rev. F)</td>
<td>400 mA</td>
</tr>
<tr>
<td>8Gb x8 (4 pcs)</td>
<td>4GB</td>
<td>330 mm² (Rev. R)</td>
<td>620 mA</td>
</tr>
<tr>
<td>16Gb x8 (4 pcs)</td>
<td>8GB</td>
<td>330 mm² (Rev. F)</td>
<td>668 mA</td>
</tr>
<tr>
<td>32Gb x16 DDP (2 pcs)</td>
<td>8GB</td>
<td>195 mm² (Rev. F)</td>
<td>668 mA</td>
</tr>
</tbody>
</table>

Figure 1: x32 Bus Configuration Diagrams

a) With x16 Components

```
x16

8
8

x32 Controller
```

b) With x8 Components

```
x8   x8   x8   x8

8
8
8
8

x32 Controller
```
Table 2: DDR4 Single-Rank x64 Bus Configuration Options

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Density</th>
<th>Component Area</th>
<th>(I_{DD7 @ 3200 , \text{MT/s}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>8Gb x16 (4 pcs)</td>
<td>4GB</td>
<td>390 mm² (Rev. R)</td>
<td>900 mA</td>
</tr>
<tr>
<td>16Gb x16 (4 pcs)</td>
<td>8GB</td>
<td>390 mm² (Rev. F)</td>
<td>800 mA</td>
</tr>
<tr>
<td>8Gb x8 (8 pcs)</td>
<td>8GB</td>
<td>660 mm² (Rev. R)</td>
<td>1240 mA</td>
</tr>
<tr>
<td>16Gb x8 (8 pcs)</td>
<td>16GB</td>
<td>660 mm² (Rev. F)</td>
<td>1336 mA</td>
</tr>
<tr>
<td>32Gb x16 DDP (4 pcs)</td>
<td>16GB</td>
<td>390 mm² (Rev. F)</td>
<td>1336 mA</td>
</tr>
</tbody>
</table>

Figure 2: x64 Bus Configuration Diagrams

a) With x16 Components

b) With x8 Components

The tables above show that when there is a choice between x16 and x8 components, the x16 configuration has clear advantages in board area and power consumption over the same density x8 configuration. In addition, the controller has fewer loads on the command/address/clock signals when using true x16 components. The reduced loading can help with layout, signal integrity and even controller power for driving these signals. Note that the x16 DDP components will present the same command/address/clock signal loading and power as using x8 components, but will provide an advantage in board area.
Adding ECC

As mentioned in the introduction, the system requirements for some applications require an additional level of data integrity and confidence, and this is commonly addressed using ECC. For 32- and 64-bit data paths, ECC protection is provided by adding an extra 8 bits, making buses that are 40-bits and 72-bits wide, respectively. (It is beyond the scope of this document to discuss the implementation and merits of specific ECC schemes.)

There are several challenges when adding ECC to a DDR4 bus. The ECC component must be selected to match the addressing used by the other components on the bus. Because x16 DDR4 components have only two bank groups and x8 components have four bank groups, it is not possible to use a x8 component of half the density (as could be done for DDR3 designs). The addressing for a x8 DDR4 component forces the ECC device to be the same density as the x16 component, and half of the density goes unused in the form of two extra bank groups.

The alternative is to use a x16 component for ECC. To make the row and column addressing match the data components, the ECC component must have the same density. Using the same density x16 component has the advantage of simplifying the BOM somewhat (all DDR4 devices are identical), but it does result in an unused byte lane on the ECC component.

We will examine both options.

ECC With an Additional x16 Component

As mentioned above, using an additional x16 component for ECC simplifies the DRAM portion of the BOM because the same component is used for all placements on the bus, but it has disadvantages as well. Compared to a x8 ECC component, the x16 power will be slightly higher and it will use a bit more board space. In addition, there is an unused byte lane that must be terminated. The following figure shows a high-level diagram of adding a x16 component for ECC.

Figure 3: Adding a x16 Component for ECC

a) x32 Data Path

b) x64 Data Path
When using a x16 component for ECC, the lower byte lane (DQ[7:0]) must be used for the ECC bits. DDR4 memory is capable of per-DRAM addressability (PDA), and this function is used during the DDR4 device initialization sequence for $V_{	ext{REFDQ}}$ calibration. PDA is enabled by DQ0, so the lower byte lane must be used and connected to the controller.

The unused upper byte lane should be terminated as follows:
- DQ[15:8] can be left floating (ODT will terminate to $V_{	ext{DDQ}}$)
- UDM_n/UDBI_n should be terminated to $V_{	ext{DDQ}}$ (allows DM or DBI to be enabled)
- UDQS_t should be terminated to $V_{	ext{DDQ}}$
- UDQS_c should be terminated to $V_{	ext{SSQ}}$

Figure 4 shows the details of these connections.

Figure 4: DDR4 x16 Component Connected as ECC Device

ECC With an Additional x8 Component

Using an additional x8 component for ECC results in slightly lower power and will use slightly less board space than a x16 component. In addition, there is no unused byte lane to terminate. But, matching the address configuration of the x16 data components begins with a x8 ECC component of the same density as the x16, with half of the bank groups disabled. Figure 5 shows a high-level diagram of adding a x8 component for ECC.
Figure 5: Adding a x8 Component for ECC

a) x32 Data Path

![Diagram of x32 Data Path]

b) x64 Data Path

![Diagram of x64 Data Path]

Half of the bank groups are disabled by tying BG1 to V_{SSQ}, as shown in Figure 6. This enables command/address parity. Because the unused BG1 input on the x16 devices is treated as a zero, the parity generated by both the x16 and the x8 devices will be the same.

Figure 6: DDR4 x8 Component Connected as ECC Device

![Diagram of DDR4 x8 Component Connected as ECC Device]
Considerations for Using DDR4 x16 DDP

The DDR4 standard includes a special configuration for a x16 dual die package (DDP). This device contains two x8 die connected as a single rank. Although more expensive than two discrete x8 DDR4 packages, the DDP occupies considerably less board area. This makes it an excellent option where higher density is needed, but board space is constrained. Because the DDP uses x8 die, BG1 is required on the x16 DDP package. (A second ZQ is also required on the board; for suggestions on designing a board that accepts both standard x16 DDR4 and DDP x16 DDR4 devices, see TN-40-40: DDR4 Point-to-Point Design Guide.)

When adding ECC to a data bus using x16 DDP devices, the most economic choice is to use an additional discrete x8 component for the ECC device. No special connections are needed, as all devices use BG1, and all DQ signals (byte lanes) are used. Figure 7 shows an overview for adding ECC when using x16 DDP devices.

Figure 7: Adding ECC to x16 DDP Components

a) x32 Data Path

b) x64 Data Path
Tables 3 and 4 compare the key parameters for the various options of adding ECC to DDR4 buses of various densities. Table 3 shows these results for a x32 data path (x40 total bus width), and Table 4 shows them for a x64 data path (x72 total bus width).

Table 3: Key Parameters for x32 DDR4 Data Path With ECC

<table>
<thead>
<tr>
<th>x32 Data Bus with ECC</th>
<th>Density</th>
<th>Component Area</th>
<th>I_{DD7} @ 3200 MT/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using x8 ECC Component</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8Gb x16 (2 pcs + 8Gb x8 ECC)</td>
<td>2GB</td>
<td>277.5 mm² (Rev. R)</td>
<td>605 mA</td>
</tr>
<tr>
<td>16Gb x16 (2 pcs + 16Gb x8 ECC)</td>
<td>4GB</td>
<td>277.5 mm² (Rev. F)</td>
<td>567 mA</td>
</tr>
<tr>
<td>8Gb x8 (5 pcs)</td>
<td>4GB</td>
<td>412.5 mm² (Rev. R)</td>
<td>775 mA</td>
</tr>
<tr>
<td>16Gb x8 (5 pcs)</td>
<td>8GB</td>
<td>412.5 mm² (Rev. F)</td>
<td>835 mA</td>
</tr>
<tr>
<td>32Gb x16 DDP (2 pcs + 16Gb x8 ECC)</td>
<td>8GB</td>
<td>277.5 mm² (Rev. F)</td>
<td>835 mA</td>
</tr>
<tr>
<td>Using x16 ECC Component</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8Gb x16 (3 pcs)</td>
<td>2GB</td>
<td>292.5 mm² (Rev. R)</td>
<td>675 mA</td>
</tr>
<tr>
<td>16Gb x16 (3 pcs)</td>
<td>4GB</td>
<td>292.5 mm² (Rev. F)</td>
<td>600 mA</td>
</tr>
</tbody>
</table>

Table 4: Key Parameters for x64 DDR4 Data Path With ECC

<table>
<thead>
<tr>
<th>x64 Data Bus with ECC</th>
<th>Density</th>
<th>Component Area</th>
<th>I_{DD7} @ 3200 MT/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using x8 ECC Component</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8Gb x16 (4 pcs + 8Gb x8 ECC)</td>
<td>4GB</td>
<td>472.5 mm² (Rev. R)</td>
<td>1055 mA</td>
</tr>
<tr>
<td>16Gb x16 (4 pcs + 16Gb x8 ECC)</td>
<td>8GB</td>
<td>472.5 mm² (Rev. F)</td>
<td>967 mA</td>
</tr>
<tr>
<td>8Gb x8 (9 pcs)</td>
<td>8GB</td>
<td>742.5 mm² (Rev. R)</td>
<td>1395 mA</td>
</tr>
<tr>
<td>16Gb x8 (9 pcs)</td>
<td>16GB</td>
<td>742.5 mm² (Rev. F)</td>
<td>1503 mA</td>
</tr>
<tr>
<td>32Gb x16 DDP (4 pcs + 16Gb x8 ECC)</td>
<td>16GB</td>
<td>472.5 mm² (Rev. F)</td>
<td>1503 mA</td>
</tr>
<tr>
<td>Using x16 ECC Component</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8Gb x16 (5 pcs)</td>
<td>4GB</td>
<td>487.5 mm² (Rev. R)</td>
<td>1125 mA</td>
</tr>
<tr>
<td>16Gb x16 (5 pcs)</td>
<td>8GB</td>
<td>487.5 mm² (Rev. F)</td>
<td>1000 mA</td>
</tr>
</tbody>
</table>

As the tables show, using x16 data components with a x8 component for ECC results in the lowest power and the least board area. Using a x16 component for ECC simplifies the BOM (and thus the procurement process) at the cost of small increases in power and board area, plus a slight added complexity in terminating an unused byte lane.

The x16 DDP provides the same density and power as using all x8 components, but at the same component area as the standard x16 with the x8 ECC component. Thus, you get twice the density in the same board area.
Write CRC

System designers who wish to use the DDR4 write CRC feature as a debug or verification tool should check that the DRAM used for ECC is suitable. While older generations of Micron DRAMs may not support the write CRC feature when using a x16 as an ECC part, Micron’s latest generations of DDR4 x16 (8Gb Die Rev E and Rev R, 16Gb Die Rev B, E, and F) will manage the write CRC correctly for the lower byte as long as the upper DQ/DQS pins are floating.
Conclusion

There are several viable choices for adding ECC to low-density DDR4 buses. The optimal choice for any design will be the balance of power, board space and BOM complexity (including additional terminations for unused signals on the byte lane). The guidelines presented here will help the designer find the implementation with the right balance for their needs.
Revision History

Rev. B – 3/23
- Updated Write CRC section
- Updated Tables 1-4

Rev. A – 3/18
- Initial release