Algebra: Quality Control Micron Technology, Inc **Job Description:** Develop wafer level test strategies and test programs. Provide failure analysis reporting. Monitor device yields, failure rates, and repair rates. Interact with various engineering and product groups to optimize device yields and minimize costs. #### **Problem:** The CTE (Center to Edge) range of the readings taken of the center of a wafer and various points on the edge of a wafer after Chemical Mechanical Planarization (CMP) must be calculated and compared with a critical value to determine if the process is accurate. The critical value is 1000. Determine whether Process A and Process B are accurate (absolute value is less than 1000). | | X ₁ | X ₂ | X ₃ | X ₄ | X ₅ | |-----------|----------------|----------------|----------------|----------------|----------------| | Process A | 22000 | 23500 | 21000 | 24000 | 21500 | | Process B | 17000 | 19000 | 20000 | 21000 | 19700 | $$CTE = \left[\frac{X_1 + X_3 + X_4 + X_5}{4} - X_2 \right]$$ # **Algebra: Quality Control** Micron Technology, Inc **Job Description:** Develop wafer level test strategies and test programs. Provide failure analysis reporting. Monitor device yields, failure rates, and repair rates. Interact with various engineering and product groups to optimize device yields and minimize costs. ### **Problem:** The CTE (Center to Edge) range of the readings taken of the center of a wafer and various points on the edge of a wafer after Chemical Mechanical Planarization (CMP) must be calculated and compared with a critical value to determine if the process is accurate. The critical value is 1000. Determine whether Process A and Process B are accurate (absolute value is less than 1000). | | X ₁ | X ₂ | X ₃ | X ₄ | X ₅ | |-----------|----------------|----------------|----------------|----------------|----------------| | Process A | 22000 | 23500 | 21000 | 24000 | 21500 | | Process B | 17000 | 19000 | 20000 | 21000 | 19700 | ### Solution: The CTE range is calculated by finding the difference between the average or *mean* of the readings taken on the edge of the wafer with the reading taken in the center. | | X ₁ | X_2 | X ₃ | X_4 | X ₅ | |-----------|----------------|-------|----------------|-------|-----------------------| | Process A | 22000 | 23500 | 21000 | 24000 | 21500 | | Process B | 17000 | 19000 | 20000 | 21000 | 19700 | $$CTE_{A} = \begin{bmatrix} & 22000 + 21000 + 24000 + 21500 & & -23500 \end{bmatrix} = -1375$$ $$CTE_{B} = \begin{bmatrix} & 17000 + 20000 + 21000 + 19700 & & -19000 \end{bmatrix} = 425$$ **Process B** is accurate because it has a CTE range less than the critical value of 1000.